

Ewha International Summer College

Course Syllabus

Fluid Mechanics

Professor:	Jung-Rok Lee
E-mail:	jungrok@ewha.ac.kr
Home Univ.:	Ewha Womans University
Dept.:	Division of Mechanical and Biomedical Engineering

Description:	Fluid Mechanics is a basic discipline in mechanical engineering concerned with the mechanics
	of fluids including mainly gases and liquids. In this course, students will learn basic properties
	of fluids, and the concepts of pressure and buoyancy through hydrostatic analyses. To analyze
	the motion of flow, the governing equations will be introduced in integral forms using
	control volume method. Then, the governing equations in differential forms will be discussed.
	The flow in a duct will be briefly discussed to improve students' design skills.

Objective:	Students will learn the basic concepts of fluid mechanics, and how to analyze the motion of
	fluids. Students will learn how to design a fluidic system.
Prerequisite::	[Textbook] Fluid Mechanics (8 th Ed.) by Frank M. White, McGraw-Hill Education
	(ISBN: 9789814720175)
	- Required to take Calculus or equivalent course
	- Highly recommended to take Engineer Mathematics

Credits	3		Contact Hours	45		
Week 1	6/25(Thu)	Introduction to Fluid Mechanics & Basic Fluid Properties				
Week 2	6/29(Mon)	Flow Patterns, Pre	Flow Patterns, Pressure & Pressure Gradient			
	6/30(Tue)	Pressure Distributions & Center of Pressure (CP)				
	7/1(Wed)	Hydrostatic Forces & Basic Physical Laws of Fluid Mechanics				
	7/2(Thu)	The Reynolds Transport Theorem & Conservation of Mass				
Week 3	7/6(Mon)	Momentum Equations I & II				
	7/7(Tue)	Momentum Equations III & Bernoulli Equation I				
	7/8(Wed)	Midterm				
	7/9(Thu)	Bernoulli Equation II & III				
Week 4	7/13(Mon)	Differential Equa	tion of Mass Conservation (Cont	tinuity) & Differential Equation		
		of Linear Momen	itum I			
	7/14(Tue)	Differential Equa	ation of Linear Momentum II	(Navier-Stokes Equations) &		
		Stream Function				

	7/15(Wed)	Incompressible Viscous Flows & Principles of Dimensional Homogeneity			
	7/16(Thu)	Pi Theorem & Non-dimensionalization			
Week 5	7/20(Mon)	Viscous Flow in Ducts I & II			
	7/21(Tue)	Finals			

Evaluation(%)	Midterm	Final	Attendance	Assignments	Participation	Etc.
	35%	40%	0%	15%	10%	0%

<u>× Applicants with intent for more than one course are asked to make up a syllabus for each, repeatedly</u> using the above template.

• Homework has to be submitted to the Cyber Campus (cyber.ewha.ac.kr) by the indicated deadlines.

✓ Either scanned or photographed will be acceptable, but all answers should be clearly readable.

- ✓ No delayed homework is allowed.
- \checkmark One silver bullet is given to every student to remove their lowest score of homework.
- More than 9 absences (10 or more) will result in F grade according to the school rules.
 - ✓ After 3 absences, each absence is equivalent to 2% of your participation out of 10%.
 (i.e., up to 3 absences, it does not affect your participation score.)
- Grading: Not solely on a curve (Absolute scale + relative scale)